
Version 1.0, 09/15/97 7

2. TECHNICAL ARCHITECTURE OVERVIEW

This section provides an overview of technical architecture, as well as the services, components, and
distribution strategies that comprise a technical architecture. Subsection 2.1 defines technical architecture
types and Subsection 2.2 describes technical architecture services and strategies.

2.1 Architecture Types

Technical architectures represent detailed plans from which systems can be implemented. Just as
requirements articulate the end users’ vision of system functionality and performance, technical
architectures define the technical and organizational vision for a system. Technical architectures can be
classified into three broad types that correspond to three different levels of technical detail and specificity.

• Framework Architecture: Based on high-level functional requirements, framework architectures
define the overall process and data distribution strategy to be used by the system.

• Conceptual Architecture: Based upon a framework architecture, a conceptual architecture
describes how system requirements are allocated to physical components. The conceptual
architecture is tightly coupled to specific, detailed functional requirements. Additionally, the
conceptual architecture refines the component distribution model proposed within the framework
architecture and defines specific component resource needs based on allocated requirements. The
conceptual architecture also recommends specific standards with which the architecture should
comply, and makes an initial recommendation of products to implement architecture components.

• Target Architecture: Based upon a conceptual architecture and upon preliminary system design
activities, the target architecture provides a formal and detailed plan from which a system can be
implemented. The target architecture refines identified system components, component
distribution strategies, and estimated component resource needs. The target architecture is tightly
coupled with a system’s preliminary designs and is used as a blueprint for migrating,
implementing, and maintaining a system.

Architectures evolve in parallel with system designs, encompassing the following activities:

Step 1: Identify preliminary system requirements, and organizational and technical goals.
Step 2: Define a framework technical architecture that is most appropriate for satisfying target
system requirements and achieving organizational and technical goals.
Step 3: Refine system distribution strategies by allocating functional and data requirements to
framework architecture.
Step 4: Define a conceptual architecture that is most appropriate for the system distribution
strategy.
Step 5: Determine system design strategy based on conceptual architecture, performance (e.g.,
reliability, accessibility, response time) requirements, and refined data and transaction volume
estimates.
Step 6: Define a target architecture most appropriate for the system design strategy.

Version 1.0, 09/15/97 8

Figure 2-1 illustrates these steps, and that the
target architecture is a tailored augmentation of
the conceptual architecture, which is based on
the framework architecture. Additionally, Figure
2-1 illustrates that architecture designs are
dependent upon:

• System requirements, which result
from business area analysis activities.

• System distribution strategies, which
result from process and data
distribution analysis.

• System design strategy, which results
from preliminary design activities.

Figure 2-2 summarizes the activities involved in defining each of the architectural types:

Technical architectures describe the components (e.g. hardware, software, telecommunications) that
comprise an information system and describe the interrelationships among these components. Technical
architectures also:

• Serve as a framework for understanding and standardizing systems and their components.
• Provide models for understanding both existing and future systems.
• Define frameworks for satisfying integrated system requirements.
• Decrease interface-related complexity, defects, and time to market.
• Increase product and process predictability during system development.
• Facilitate the integration of COTS and other standardized components into a system.

Distribution Analysis
Current Systems/Vision Analysis

Identified Requirements

Framework Architecture

Allocated
Requirements

Identified
Subsystems

Conceptual Architecture

Designed
Subsystems
(Preminary)

Target
Architecture

Preliminary
Design

Ar
ch

ite
ct

ur
e

Se
rv

ic
es

Id
en

tif
ie

d

Si
gn

ifi
ca

nt
 S

ys
te

m

C
om

po
ne

nt
s

Id
en

tif
ie

d
C

om
po

ne
nt

 D
is

tri
bu

tio
n

Pr
op

os
ed

R
eq

ui
re

m
en

ts
 A

llo
ca

te
d

to
 C

om
po

ne
nt

s
C

om
po

ne
nt

 D
is

tri
bu

tio
n

R
ef

in
ed

C
om

po
ne

nt
s

Si
ze

d

Ba
se

d
on

 A
llo

ca
te

d

R
eq

ui
re

m
en

ts
R

eq
ui

re
m

en
ts

 A
llo

ca
tio

n

to
 C

om
po

ne
nt

s
R

ef
in

ed

C
om

po
ne

nt
 D

is
tri

bu
tio

n

Fi
na

liz
ed

C
om

po
ne

nt
 S

iz
in

g

R
ef

in
ed

Target
Architecture √√ √√ √√
Conceptual
Architecture √√ √√ √√
Framework
Architecture √√ √√ √√

Figure 2-1. Evolution of an Architecture

Figure 2-2. Building Blocks of an Architecture

Version 1.0, 09/15/97 9

To provide the flexibility required by changing political and legal climate, economic pressures, time-to-
market requirements, technological improvements, and other factors, system architectures should:

• Provide easy, transparent, and secure access to organizational data.
• Support rapid deployment of new application systems.
• Support rapid modification of existing application systems.
• Support integration of new and existing application systems.
• Support current and emerging technologies and standards.
• Support dynamic reconfiguration of systems for scalability or network requirements.
• Support interoperability, manageability, reliability, availability, and security requirements.

As Figure 2-3 illustrates, architectures “frame” a system in terms of components (hardware, software, and
networking infrastructure) and interconnections (interfaces) among these components. Working together,
architectural components provide the services required to satisfy an organization’s needs.

 Project EASI/ED

LAN backbone

 Client platforms with Internet Browser (various)

LAN backbone

Intranet (ED Private
Network)

Database
(Primary Site)

Creat, Read,
Update, Delete

Mainframe or
Enterprise server

LAN backbone

 Client platforms with Internet Browser (various)

Internet (Public Network)

DataMart
(Target SIte) Imaging ServerWeb Server

Remote Access
 Server

Replicated
Data

(Target SIte)

EIS/DSS Server

Scanner

Client Platforms with EASI/ED
Applications

 Client platform with Internet Browser (various)

External Agency
Server

OLTP Server

External
Agency

Databases

Figure 2-3. Components of a sample Architecture

Version 1.0, 09/15/97 10

2.2 Technical Architecture Services

Technical architecture services define the capabilities delivered by an architecture and facilitate
organization of the architecture. Services are implemented within architectures via architectural
components. As Figure 2-3 illustrates, technical architecture components may include hardware platforms
(such as database or specialized application servers), telecommunication technologies (such as those used
to implement local and wide area networks), and other infrastructure technologies. Additionally, technical
architectures include system and application software. This software comprises COTS and custom
developed applications. System architectures are defined in terms of selected components (hardware,
software, etc.), component processing strategies, and the interconnection among components.

Architecture services are the capabilities required to satisfy system requirements. Using information about
the existing system(s) and about new organizational and technical requirements, architects define the
services to be delivered by the new system. Using the service definitions, system architects select the most
appropriate architectural components and allocate requirements to those components that are most suitable
for delivering specific required functionality and performance. This process is illustrated in Figure 2-4.

As Figure 2-5 illustrates, architecture services can be classified as:

• Presentation services that provide the mechanisms through which users interact with a system.
Presentation services include screen generation, window management, and on-line help.

• Application services that provide mechanisms through which business logic is implemented.
Application services govern business functions and processes performed by an application. These
services are typically invoked via the presentation services when a user issues a request or by other
business services. Application services may be computationally significant and may include
transaction processing, edit and validation, message queuing, data typing and conversion, and
process management.

Existing System
Benefits & Constraints

New Requirements/
Requirements for Change

Architecture Services
Architecture Components

(Product Selection)

New Requirements/
Requirements for Change

Figure 2-4. Process for Defining Architecture Components

Version 1.0, 09/15/97 11

• Data management services that provide
mechanisms through which data is accessed and
managed (created, updated, read, and deleted).
Data management services include database
management, file management, and related
services.

• Infrastructure services that provide common
mechanisms for improved communication
efficiency and coordination among system
components. Infrastructure services include
distributed time, file, name/directory, and
security services.

• System management services that provide
mechanisms for managing system resources,
including data. System management services
include archive management, software
distribution, system and performance
monitoring, problem reporting, and
hardware/software asset management.

2.3 Technical Architecture Processing and Distribution Strategies

Components within a technical architecture may follow a number of different processing and distribution
strategies. Processing strategies define the way(s) in which users may access and change data in the system,
while distribution strategies define the way in which software components and data resources are
distributed within the system.

Processing strategies commonly used to describe system architectures are:

• Batch The user has no immediate capability to change system data. This model allows
batch file updating, as well as batch data entry, validation, and collection. Data is
processed at scheduled intervals. On-line inquiry capabilities are not
available.

• Batch with
Online Data
Collection

The user has no immediate capability to change system data. This model allows
batch file updating and on-line data entry/collection. Transactions are entered
and transferred to either a tape or disk file. Later, the transactions are edited
and stored in a posting file for subsequent batch file update of system data.

• On-line Inquiry The user has no immediate capability to change system data. This model
allows on-line inquiry with batch data entry and file updating. The user can
access the computer and review data managed by the system (as of the last
update), but cannot immediately modify system data. To modify data
managed by the system, batch processes must be used.

Data
Management

Services

Application
Services

Presentation
Services

SYSTEMS MANAGEMENT SERVICES

IN
FR

A
S

TR
U

C
TU

R
E

 S
E

R
V

IC
E

S

Figure 2-5. Classification of
Architecture Services

Version 1.0, 09/15/97 12

• On-line Inquiry
and Data
Collection

The user has no immediate capability to change system data. This model
allows on-line inquiry, batch file updating, and on-line data entry, data
validation and data collection. Transactions are entered and transferred to
either a tape or disk file. Or at the time of entry later, the transactions are
edited and stored in a posting file for subsequent batch file update of system
data.

• Real-Time
Control

The user has the capability to immediately change system data. This model
allows on-line inquiry, data entry, and file updating. The user uses directly
updates the computer files by entering one transaction at a time. In such a
system, there may not be any batch controls.

• Remote Job
Entry

The user has no immediate capability to change system data. Data from
remote locations is entered in batches, e.g., the operator enters a batch update,
which is reconciled and processed at a scheduled time.

These processing strategies significantly affect the selection of architecture components. However, the
interconnection of these components is largely determined by the distribution of processes (i.e.
software components) and data. For this reason, three classes of distribution strategies are considered
when developing system architectures. These classes are:

• Physical software (process) distribution strategies that define how software components,
providing presentation, application, and data management services, will be allocated to system
hardware.

• Logical software (process) distribution strategies that define how system functionality will be
partitioned among software components. For example, functionality for providing application
services in a system may be physically located on a single hardware component, but be logically
segmented into separate software components, with a set of interfaces among these components.

• Data Distribution strategies that define how data will be distributed throughout a system.

As illustrated in Figure 2-6, these strategies are used to define technical architectures. Framework
technical architectures, are primarily based on the physical software (process) and data distribution
strategies. The conceptual and target technical architectures are based on the framework architecture
and on the logical software (process) distribution strategy.

Existing System
Benefits &
Constraints

Architecture
Services &
Processing
Strategies

Architecture
Components

(Product Selection)

New
Requirements/

Requirements for
Change

Logical SW
Distribution
Strategies

Physical SW
Distribution
Strategies

Data Distribution
Models

Framework
Architecture

Infrastructure

Software

Conceptual
& Target

Architectures

Figure 2-6. Process for Deriving Framework, Conceptual, and Target Architectures

Version 1.0, 09/15/97 13

2.3.1 Physical Software (Process) Distribution Strategies

Six physical software distribution strategies are commonly used to describe architectures:

• Monolithic All logic – including presentation, application, and data management – is
performed on the server side of the network. The client side of the network,
where the user is located, is typically a dumb terminal (VT100 or 3270). This
software distribution strategy is also referred to as “centralized processing.”

• Distributed
Presentation

Almost the entire user interface is located on the server side of the network.
The presentation management subsystem resides on the client. Part of the
logic associated with end-user presentation resides on the client side of
network, part on the server. The application logic and the database reside on
the server side of the network. “Screen scraping” is an example of this model
–e.g., the server prepares a terminal data stream intended for a dumb terminal,
but the client does not display it in raw form. Rather, the client extracts data
fields and creates a new interface for the user.

• Remote
Presentation

Application code and data management software executes on the server. All
software used for screen painting, including the application logic for
presentation and presentation management, resides on the client side of
network. This distribution model is sometimes referred to as “thin client.”
Systems using PC X Server-based clients are examples of this model.

• Distributed
Logic

Application logic is split across the server and client sides of the network. The
application code on the server side is normally related to data input and output
(I/O). This code may be system-specific stored procedures, transaction-
processing logic, or application logic used throughout an enterprise.
Application code associated with user I/O resides on the client side of the
network.

• Remote Data
Management

Application and data management functions are physically separated. The user
interface and application are on the client side of network, the data
management software and data reside on the server side of the network. This
distribution model is sometimes referred to as “fat client.” This is currently the
most commonly used physical distribution model.

• Distributed Data
Management

System data management software and data reside on both the client and
server sides of the network.

Physical software distribution strategies are used to allocate software components (i.e. processes) to
hardware resources. This physical distribution describes elementary relationships between software
components and the hardware to which these components are allocated. These strategies, (illustrated in
Figure 2-7) describe the physical distribution or “tiers” of software within an architecture. However,
the physical tiers identified within these strategies do not describe how software components will be
logically organized, nor do they describe distributed component interfaces or communication
mechanisms.

Version 1.0, 09/15/97 14

Many complex system architectures simultaneously employ several of the physical distribution
strategies described in this subsection. Nonetheless, architectures can be generally classified as
centralized (monolithic) or as distributed.

Figure 2-7. Physical Software Distribution

Version 1.0, 09/15/97 15

2.3.2 Logical Software (Process) Distribution Strategies

Figure 2-8 shows four ways in which software components may be distributed across multiple physical
tiers. Within each physical tier, software components may also be distributed logically. This involves
segmenting software components and defining the interfaces between them. For example, in Figure 2-
8, in the case where business and data access logic is physically located on Tier 2 (a specific hardware
component), it is possible to logically distribute this functionality into two separate software
components (one for business logic and another for data access logic).

Unlike physical software distribution
strategies, logical distribution strategies do
not describe where software will be
physically located within an architecture.
Rather, logical distribution strategies
articulate software design characteristics and
define:

• Logical software “tiers,” which
describe how software components
will be segmented or partitioned.

• Interfaces between partitioned
software components.

Software designs are significantly affected by
the logical software distribution strategy
employed within an architecture. As a result,
when selecting logical distribution strategies,
traditional software engineering concepts
must be considered. Architecturally important software engineering considerations include:

• Component Coupling – refers to the independence of software components. In a narrow
sense, coupling refers to the way data is exchanged between components. Loose coupling is
generally better than tight coupling. The loosest, and therefore preferred, type of coupling is
data coupling, where data is transferred as parameters via well-defined interfaces. The
tightest, or least desirable, coupling involves components directly referencing shared
variables. Tight coupling often indicates that components are not insulated from each other,
and are not designed to be separate and independent. Tightly coupled components are usually
complex, difficult to maintain, and monolithic. As a result there is very little flexibility
regarding physical distribution of components. Two applications that communicate with each
other via database management system (DBMS) updates, but which are otherwise
independent of each other, would be considered loosely coupled.

• Component Cohesion – refers to component conceptual or semantic coherence. Cohesion
reflects the degree to which one component implements one function or a group of similar
functions. For example, cohesive components do not implement multiple, disparate services,
such as presentation and application logic. Highly cohesive components are typically more
understandable and thus easier to maintain. Additionally, cohesion promotes logical and
physical software distribution flexibility, which in turn promotes system scalability. An
application composed of logically separate presentation, application, and data management
components, would be considered highly cohesive.

Software coupling and cohesion directly affect software modularity and interface design. As a result,
coupling and cohesion directly affect the flexibility and complexity of software architectures. For

Figure 2-8. Logical Software Distribution

Version 1.0, 09/15/97 16

example, when software component interfaces are based on widely accepted standards, as illustrated in
Figure 2-9, logical software tiers can promote component interoperability and substitutability. That is,
logical tiers can allow components within one tier to be changed without affecting other tiers. Loosely
coupled and highly cohesive software architectures introduce flexibility regarding the physical
distribution of software components. For example, logical distribution strategies may allow
components residing on
one computer to be
relocated without
introducing significant
design complications.
Figure 2-10 illustrates
how the logical
separation of software
components can allow
physical distribution of
these components to be
changed without
dramatically affecting
the application software
design.

In addition to the one-
tier logical software
distribution, which is
synonymous with the
monolithic physical
software distribution,
logical software distribution strategies that are commonly used to describe architectures are:

• Two-tier logical distribution, in which application
logic is intertwined with either (or both) the presentation
or the data management functions and delivered on the
same platform. Not all software components are
cohesive and they may not be loosely coupled. With the
two-tier distribution model, the server either runs no
application logic (i.e., runs only the DBMS) or embeds
all server-based application logic within the DBMS. As
a result, changes to the application logic often
complicate maintenance of the presentation logic and/or
the data management logic. The distributed data
management and remote data management physical
distribution models are typically implemented as two-
tier distributions. In the recent past, distributed systems
were almost exclusively two-tier. However, in many
cases, these implementations have proven hard to
modify, difficult to manage, expensive, and difficult to
scale for enterprise-wide deployment. As a result, the
three-tier strategy is often considered more appropriate
for large, mission-critical systems.

• Three-tier (multi-tier) logical distribution where
presentation, application, and data management
services are designed as separate components that can
be delivered on different platforms. Because multi-tier
applications are highly cohesive and loosely coupled,
they can be delivered across multiple (three or more) physical tiers based on the available

Figure 2-9. Partition of Logical Software Distribution

Data Management Server Data Mnaagement/
Application Server

Data
Management

Application Server

Application

Client Workstation

Presentation

Client Workstation

Presentation

 Three-Tier Remote
Presentation Distribution

 Three-Tier Remote
Presentation Distribution

Data
Management

Application

Figure 2-10. Logical Separation of
Software

Client Workstations

Execute presentation logic and issue
service requests against business

logic

Workgroup/Departmental Servers

Execute business logic and issue
service requests against database

logic

Division/Enterprise Servers

Execute database logic. This is the
only place for SQL or stored

procedures!

This level of
isolation protects
presentation logic
from changes to
business logic,
and vice-versa

This level of
isolation protects

business logic
from changes to
database logic,
and vice-versa

Version 1.0, 09/15/97 17

infrastructure, performance requirements, and standards. Most multi-tier applications distribute
user-related I/O logic to the client platform, and most or all of the data-related I/O logic to server
resources. However, application and data management logic may be distributed in any number of
ways depending upon the availability of specialized servers and on other infrastructure
considerations.

As is the case with physical software distribution strategies, an architecture may simultaneously employ
several logical distribution strategies. Considerations for selecting a logical software distribution strategy
for an architecture are presented in Figure 2-11.

Strengths Weaknesses

Two-tier • Mature toolsets are available
• Required skillsets and experience are

common
• Simpler approach to design
• Generally simpler to implement.
• More infrastructure independent
• Uses the power of the client for a more robust

user interface and application logic execution

• Business and presentation logic are not isolated
or insulated from each other

• Limited code reusability – there is no common
application logic

• Limited scalability and flexibility
• Requires a more complex desktop or client
• Software configuration distribution and

management is more complex and harder to
administer

• More sensitive to network bandwidth
• Generates higher network loads and stresses

Three-tier • Middle tier provides expanded levels of
service

• Enhances scalability and flexibility
• Easier to develop and support complex

applications over time
• Reduces network traffic between clients and

application servers
• Requires a less complex client
• Easier to integrate multiple, heterogeneous

data sources
• Is the current industry direction for enterprise

applications

• Requires a more complex environment
• Built on emerging technology
• Required skill-sets and experienced developers

not common
• Normally involves higher levels of integration

and data distribution
• Requires more up-front analysis and design

Figure 2-11. Strengths and Weaknesses for Logical Software Distribution Strategies

2.3.3 Data Distribution Strategies

It is common for an organization’s various business units to require access to the same information. In the
past, access to centralized data could not be guaranteed during network failures, resulting in less application
availability, reduced data accessibility, downtime, lost revenue, and inconvenience. Distributed applications
needing access to centralized data may suffer poor performance due to relatively limited wide area network
bandwidth and throughput capabilities. In addition, competition among applications for the same data
within a system can adversely affect performance and response time.

Data distribution and access strategies have a direct impact on application design, end user performance,
and operational support. Long-term application growth and enhancement, as well as the need to support
increased numbers of users, may dictate that data be distributed to a number of locations. Data distribution
decisions also have an impact on the network topology, transport mechanisms, and bandwidth requirements
of a system. As a result, data distribution strategies must be considered when designing a technical
architecture.

Version 1.0, 09/15/97 18

The data distribution strategies commonly used to describe system architectures are:

• Centralized data in which all data is maintained in one central location, from which users access
it. The centralized data strategy is the least complicated data distribution strategy and is the most
secure. However, this strategy can adversely affect system scalability and introduces risk, as all
distributed system processes are dependent upon the availability of a single resource – the
centralized database (see Figure 2-12).

• Distributed data in which data resources are distributed to multiple sites, where they can be used
by similarly distributed system components. Data distribution configurations are complicated and
can be difficult to maintain because business rules associated with data management must be
maintained at more than one site.

With data distribution, the same data schema and data is distributed to each target site. Data
distribution provides targets sites with access to all of an organization’s distributed data. However,
this distribution strategy can substantially increase network loads and requires the use of two-
phase commit mechanisms to ensure distributed data remains synchronized as changes are made at
each target site. (Two-phase commit mechanisms ensure that updates are successfully made to all
copies of the data before changes are committed to any of the copies.) Data distribution is
illustrated in Figure 2-13.

Central Database

Site A Site B Site C

Figure 2-12. Centralized Data

Figure 2-13. Distributed Data

Version 1.0, 09/15/97 19

• Replicated data in which data is copied to distributed target sites. Data replication can take two
forms, (a) primary-site data replication for data publication and (b)primary-site data replication for
data consolidation. Figure 2-14 illustrates primary-site replication for data publication and Figure
2-15 illustrates primary-site data replication for data consolidation. The central difference between
these two configurations is that the “data publication” model only allows updates to the centralized
data source, whereas the “data consolidation” model allows data at the distributed target sites to be
updated.

With primary-site replication for data publication, the primary site copies data to multiple target data stores
and data is changed only at the primary site. The most simplistic example of this model is a single primary
site that replicates all its data to a secondary system or to a set of identical secondary systems. In a more
complicated configuration, portions of the primary site database could be copied to specified secondary
sites, with each secondary site potentially receiving a different portion of the primary site database. This
data replication configuration is often used to create hot-site backups and to populate distributed decision
support system data repositories.

With primary-site replication for data consolidation there may be multiple primary data resources, each of
which replicated data to a centralized secondary site. Data consolidation may occur when the centralized
secondary site “pulls” data from the remote primary sites. Alternatively, the remote primary sites may
“push” data to the centrally located database. The “push” strategy is often preferred in situations involving
mobile remote sites, which may not be consistently available to the centralized site. This “data
consolidation” configuration is often useful in those situations where data may need to be regularly
aggregated and reviewed, but distributed components need to be able to work without always being
connected to the centralized site.

Site A
Central
Database Site C

Site B

Figure 2-14. Distributed Data with Replication for Data Publication

Version 1.0, 09/15/97 20

As is the case with the physical and logical software distribution strategies, a technical architecture may
simultaneously employ several data distribution strategies. When considering data distribution strategies
the strengths and weaknesses outlined in Figure 2-16 should be considered.

Strengths Weaknesses

Centralized • Easiest to maintain
• Most secure
• Eliminates data synchronization issues

• Hardest to scale
• Can be performance constrained
• Not flexible
• Limited support for distributed autonomous

operations
Distributed • One view of the data for all users and

applications
• Can partition for performance
• Tools provided by the DBMS vendor

• Require two-phase commit for data integrity and
synchronization

• Can be network intensive
• Complex to setup and maintain

Replicated • Allows for local variants
• Very scaleable for performance
• DBMS vendor provides tools for

synchronization

• Can increase network loads
• Data can be out of synchronization
• Complicated to maintain

Figure 2-16. Strengths and Weaknesses of Data Distribution Strategies

2.4 Project EASI/ED Framework Architecture

As indicated in subsection 2.1, this document defines, evaluates, and recommends a framework technical
architecture for Project EASI/ED. This framework technical architecture, which is described in Section 5, is
primarily based on the physical software (process) and data distribution strategies described in subsection
2.3. Subsequent system architectures (conceptual and target) will use the logical software (process)
distribution strategies to build upon the framework architecture.

Site A
Central
Database Site C

Site B

Figure 2-15. Distributed Data with Replication for Data Consolidation

